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Abstract

This article develops an implicit inverse method for reconstructing dynamic multidimensional phase boundaries[ The
technique is suitable for problems having small liquid phase Peclet numbers\ Per � "V
rL
:a¼#\ where V
r is the characteristic
liquid phase velocity scale evaluated relative to the solid phase velocity scale\ L
 is a characteristic length scale\ and a¼ is
a characteristic thermal di}usivity[ Under these conditions\ a multidimensional Stefan problem emerges[ Explicit front!
tracking procedures are eliminated by incorporating the latent heat e}ect in an e}ective\ temperature dependent speci_c
heat[ Time!sequential reconstruction is then performed by solving a multidimensional nonlinear inverse heat conduction
problem[ As an illustration\ evolving phase boundaries are reconstructed within moving and stationary plates subject
to concentrated\ high energy density heat sources[ It is found that boundaries can be accurately reconstructed using
either exact or noisy temperature measurements[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

cp speci_c heat
ðCŁ capacitance matrix
e"k#

n error measure at location k\ time tn
f dimensionless function of temperature
"fn# force vector\ time tn
h speci_c enthalpy
ht dimensionless time step
k thermal conductivity
ðKŁ sti}ness matrix
L
 length scale
L
fg latent heat of fusion
ðMŁ mass matrix
N number of surface measurement locations
Pe Peclet number
P"t# heat ~ux parameter vector at time t
q heat ~ux
r radial coordinate
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R solution domain radius
Sn sum of squares error at time tn
t time
T temperature
"Tn# temperature vector\ time tn
u velocity
up plate speed
U Heaviside function
V
 velocity scale
x\ y\ z Cartesian coordinates
Yk measured temperature at location k[

Greek symbols
a thermal di}usivity^ material index
b exponent in Gaussian heat source
o emissivity
h de_ned in equation "7#
r density
s StefanÐBoltzmann constant
s¼ d\ sd dimensional and dimensionless temperature error
Y Gaussian random number
fi weight function
VL lower boundary
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VR far _eld boundary
Vu upper boundary[

Subscripts and superscripts
c speci_c heat
f ~uid phase
i initial
k thermal conductivity
l liquidus
s solid phase^ solidus
vap vaporization
9 constant coe.cient
� ambient[

Diacritical mark
g dimensional variable[

0[ Introduction

Various inverse methods have been proposed for
reconstructing phase change boundaries in freezing:
melting materials[ A viable inverse reconstruction
method must incorporate some means of introducing a
physical excitation into the melting:freezing material\ a
means of detecting the material|s response to the exci!
tation\ and an accurate "direct# model relating the
material|s response to excitation[ In order to allow recon!
struction\ the direct model must implicitly or explicitly
incorporate the unknown boundary[

Material excitation and detection can be performed by
a variety of mechanical\ thermal\ optical\ and electro!
magnetic methods[ For example\ in thermal!based recon!
struction\ the excitationÐresponse couple is typically a
boundary heat ~ux distribution and the associated tem!
perature _eld[ The phase boundary is reconstructed by
minimizing an error measure between measured tem!
peratures "heat ~uxes# and temperatures "heat ~uxes# cal!
culated by the direct model "see\ e[g[ Keanini and Desai
ð0Ł#[ In acoustically!based reconstruction ð1Ł\ the
material|s response to ultrasonic excitation is measured
and used in conjunction with a direct model of in!material
acoustic response[ The unknown boundary shape is
altered until predicted model response matches the
observed response[ Finally\ in an electromechanical or
opto!mechanical approach\ driven bulk wave modes
within the liquid phase are sensed electronically ð2Ł or
optically[ The unknown melt boundary shape\ incor!
porated within a direct model of the pool|s response\ is
obtained by matching the pool|s observed response with
model predictions[ Unfortunately\ in high!temperature!
gradient applications "e[g[\ welding#\ refractive e}ects
limit the utility of acoustic methods[ Similarly\ electro!
or opto!mechanical approaches are subject to error due
to excitation of higher!order wave modes[

This article describes a thermally!based method for

reconstructing three!dimensional phase boundaries\
applicable to problems where the liquid phase Peclet
number is small[ Under this condition\ liquid phase con!
duction dominates convection and we recover the Stefan
problem[

Relatively little work has been reported on solution
of multidimensional inverse heat conduction problems
"IHCP# involving phase change ð0\ 3\ 4Ł\ while apparently
no work has been reported on inverse solution of the
three!dimensional Stefan problem[ Hsu et al[ ð3Ł used
embedded thermocouples within the solid phase to deter!
mine the time!varying position of a two!dimensional
phase interface during the early stages of weld pool for!
mation[ Benard and Afshari ð4Ł determined the transient
position of a simulated two!dimensional phase interface
based on simulated thermal measurements on an external
surface[ Keanini and Desai ð0Ł reconstructed exper!
imental\ quasisteady\ three!dimensional phase interfaces
during analog welding experiments[ "We distinguish
between inverse phase change problems and inverse
phase change control problems[ In the former\ the
unknown phase interface position is determined using
external and:or internal thermal data[ In the latter\ phase
interface motion is controlled by manipulating external
thermal loads[ Solution of the three!dimensional inverse
control problem has been reported by Alexandrou et al[
ð5Ł[#

Although we will focus on solution of three!dimen!
sional inverse phase change problems\ it is important to
note that the present inverse method can be directly
applied to transient\ nonlinear\ three!dimensional inverse
heat conduction problems in which phase change does
not occur[ As in the case of multidimensional inverse
phase change problems\ this problem has received rela!
tively little attention\ with existing studies focused on the
linear problem ð6Ð00Ł[ Indeed\ it appears that no work
has been reported on the three!dimensional\ transient\
non!linear IHCP[

1[ Implicit tracking of dynamic phase boundaries

Boundary reconstruction requires some means of
accounting for the boundary|s time!dependent location
and shape[ Previous studies have used front!tracking
approaches\ where direct solutions are con_ned to the
solid phase\ and the phase boundary is tracked from the
point of incipient melting ð3\ 01Ł[ Most work in this area
has focused on one!dimensional inverse Stefan problems
ð02Ð04Ł[

An alternative\ implicit method\ suitable for low liquid
Peclet number problems\ is outlined in this paper[ As
noted\ this approach uses a conductive direct model to
calculate solid and liquid phase heat transfer[ By properly
accounting for latent heat e}ects\ the unknown phase
boundary is determined implicitly\ eliminating the need
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for explicit front!tracking[ We note Voller|s ð05Ł work
which developed an explicit\ enthalpy!based front!track!
ing method for solving the one!dimensional inverse con!
trol problem[ The method to be developed in this article
is an implicit e}ective capacitance approach[

2[ Direct model

For generality\ consider a moving material in which
phase change occurs[ Let the characteristic length scale
be L
\ the liquid and solid phase velocity scales be V
f

and V
s\ and the characteristic thermal di}usivity be a¼
"evaluated at some speci_ed reference temperature#[ In
addition\ express temperature dependent thermal con!
ductivity and speci_c heat as k¼"T
# � k¼ 9fk"T# and
c¼p"T
# � c¼p9fc"T#\ where k¼ 9 and c¼p9 are dimensional con!
stants and fk and fc are dimensionless functions of tem!
perature[ Finally\ de_ne dimensionless position\ time\
and velocity as "x\ y\ z# � "x¼ :L
\ y¼:L
\ z¼:L
#\ t � t¼a:"L
:V
a#
and va � v¼a:V
a\ respectively\ where a � f "~uid# or s
"solid#[ Based on these de_nitions\ the dimensionless
energy equation within each phase assumes the form

Pea $
1T
1ta

¦ua = 9T%�
0

fc"T#
9 = ð fk"T#9T Ł "0#

where ua is the velocity in phase a\ T � "T
−T
i#:"T
s−T
i#\
T
s and T
i are the material|s solidus and initial tempera!
ture\ and Pea � V
aL
:a¼ is the a!phase Peclet number[ We
have di}erentiated between solid and liquid phase vel!
ocities and velocity scales since these can di}er by an
order of magnitude or more[ For convenience\ length
scales in both phases are assumed equal and associated
thermophysical properties are expressed as composite
functions of temperature[ Dimensional quantities will be
denoted with a caret throughout[

2[0[ Conditions allowin` a Stefan model approach

The approach we describe is appropriate when relative
liquid phase velocities\ v¼?\ are small\ where v¼? represents
liquid velocities evaluated relative to the moving solid
phase[ In particular\ we require that the characteristic
relative liquid velocity scale\ V
r\ is much smaller than the
characteristic solid phase velocity scale\ V
s]

V
r

V
s

ð 0[ "1#

Under these circumstances\ nondimensional liquid phase
velocities can be written as

vf � vs¦ov? "2#

where o � "V
r:V
s# and where vs is the instantaneous solid
phase velocity[ In addition\ we can take the liquid phase

velocity scale as V
s so that tf � ts and Pef � Pes[ Thus\
"0# assumes the following form within the liquid phase]

Pes $
1T
1ts

¦"us¦ov?# = 9T%�
0

fc"T#
9 = ð fk"T#9T Ł[ "3#

From this equation\ it is clear that relative ~uid motion
can be neglected and the problem treated as a Stefan
problem when

o Pes �
"V
f−V
s#L


a¼ s

0 Per ð 0 "4#

where Per is the Peclet number based on the relative ~uid
velocity scale[

The parameter Per is determined in part by the domi!
nant body or surface force within the liquid phase\ e[g[\
by thermocapillary\ Lorentz\ or buoyancy forces[ For
example\ in the case of thermocapillary!driven ~ow\ the
appropriate velocity scale\ determined by balancing free!
surface thermocapillary and viscous shear stresses\ is
V
f � s¼TDT
l¼n:"m¼ l¼t#\ where s¼T is the temperature derivative
of the surface tension coe.cient\ DT
 is the characteristic
free!surface temperature scale\ and l¼n and l¼t are charac!
teristic length scales in the normal and tangential direc!
tions[ In this case\ "4# becomes ðs¼TDT
l¼n:"m¼ l¼t#−V
sŁL
:a¼s ð 0[
Similar conditions can be derived for buoyancy and
Lorentz!driven ~ows[

3[ Example] weld pool evolution

In order to illustrate the approach and maintain some!
what reasonable inverse solution times\ we will consider
the early formation of weld pools within stationary and
steadily translating workpieces[ Our objective is two!fold[
First\ we would like to develop a fairly realistic numerical
simulation of early weld pool development which can
then be used to simulate experimental temperature data
as well as experimental phase boundaries "where the latter
will be used to assess boundary reconstruction accuracy#[
Second\ we would like to illustrate the boundary recon!
struction procedure by] "i# describing surface heat ~ux
parameterization\ "ii# the direct heat transfer model used
in the reconstruction code\ and "iii# operation of the
implicit reconstruction algorithm[ The reconstruction
code will be used to estimate time!varying three!dimen!
sional phase boundary shapes as well as the time!depen!
dent top!side heat ~ux distribution[ A wide range of
alternative problems in crystal growth\ glass processing\
cryopreservation\ casting\ concrete setting\ micro! and
nano!scale fabrication\ etc[\ could be usefully treated[
With respect to welding\ alternative problems could
include transient reconstruction of spot welds or friction
welds[
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3[0[ Weldin` simulation problem de_nition

We will assume that the workpiece is heated by a high
power density Gaussian heat source\ simulating laser or
focused plasma arc heating[ A coordinate system is _xed
at a point immediately below the heat source\ as shown
in Fig[ 0[ The problem is assumed to be symmetric with
respect to the line of travel "x!axis# and early time solu!
tions are obtained over a cylindrical subvolume within
the workpiece "Fig[ 0#[

The boundary conditions and initial condition are as
follows[ On the far _eld boundary dVR "r � R# the tem!
perature remains at ambient

T � 9 on dVR "5#

where initial and ambient temperatures are assumed
equal[ In addition\ a symmetry condition is applied along
the x!axis]

1T
1y

� 9 on y � 9[ "6#

The upper surface "dVu# is heated by an external source
and\ once melting begins\ is subject to heat loss by
vaporization]

1T
1z

� qs"r\ t# on dVu "7#

where

qs"r\ t# � −q9 exp "−br1#¦qvap"r\ t# "8#

q9 � q¼9

L

"k¼9fkDT
#

"09#

qvap"r\ t# �
AL
fg

"k¼9fkDT
#
T
−0:109−h"T
# "00#

Fig[ 0[ Schematic of the example welding problem[ Direct calculations are limited to the half!cylindrical volume within the dashed
lines[

h"T
# �
B


T

"01#

DT
 � T
s−T
i "02#

b � b¼L
1[ "03#

The expression for qvap is based on Dushman|s equation
where L
fg is the latent heat of vaporization and A
 and B

are constants[ The lower surface "dVL# is assumed to be
adiabatic\

1T
1z

� 9 on dDL "04#

and\ as mentioned\ the workpiece is initially in thermal
equilibrium with its surroundings]

T � 9 t � 9[ "05#

A straightforward scaling argument can be used to
show that the conditions in "7# and "04# are su.ciently
accurate\ i[e[\ that radiative and convective ~ux com!
ponents can be safely neglected[ The convective and net
radiative ~uxes are given by]

q¼c � h¼c"T
−T
�# "06#

and

q¼r � o¼s¼ ðT
3−T
3
�Ł "07#

where h¼c is the convective heat transfer coe.cient\ o¼ is
the emissivity\ and s¼ is the StefanÐBoltzmann constant[
Estimating h¼c as h¼c ½ 091\ W m−1 K−0 "see\ e[g[\ Bejan
ð06Ł#\ o¼ ½ 0\ T
 ½ 092 K ð07Ł\ and "T
−T
�# � 092 K\ and
comparing approximate radiant and convective ~uxes
against the imposed area!averaged heat ~ux\ q¼¹\ we obtain
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os"T
3−T
3
�#

q¹
½ 09−1 "08#

h¼"T
−T
�#
q¹

½ 09−0 "19#

where q¹ is given by

q¹ �
1q¼9

R1b
ð0−exp "−bR1#Ł[ "10#

"Based on the parameter values given immediately below\
q¹ � 1[66×095 W m−1[# Thus\ the simpli_ed conditions in
equations "7# and "04# introduce little error[

Thermophysical properties for low!carbon steel\ appli!
cable to both liquid and solid phases\ are taken from
Macqueene et al[ ð08Ł]

k¼"T
# � 66[523−9[9347T
 T
 ³ 0299 K "11#

k¼"T
# � 29[9 T
 − 0299 K "12#

c¼p"T
# � 142[80¦9[447T
 T
 ³ 664 K "13#

c¼p"T
# � 574[5¦
L


"T
l−T
s#
= ðU"T
−T
s#−U"T
−T
l#Ł

T
 − 664 K "14#

where the units on k¼ and c¼p are W m−0 K−0 and J kg−0

K−0\ respectively\ and where T
s � 0672 K and T
l � 0686
K[ Density is speci_ed as r¼ � 6149 kg m−2 ð08Ł[

It is important to note that latent heat e}ects are incor!
porated using an e}ective capacitance method ð08\ 19Ł
ðrefer to "14#Ł[ As an alternative\ enthalpy!based methods
ð19Ł could also be used[ Importantly\ these approaches
eliminate explicit front tracking procedures by treating
the solid and liquid phases as a single composite phase[
The e}ective capacitance approach is somewhat less
robust than enthalpy!based methods since nodal tem!
peratures and energy budgets near the phase boundary
are subject to error when time!dependent temperature
changes become too large ð19Ł[ Here we eliminate this
pathology by introducing small "_xed# time steps and by
monitoring nodal temperature changes[

An e}ective thermal conductivity\ given by equations
"11# and "12#\ is used to account for heat transfer within
the liquid phase ð08Ł[ Under low liquid phase Peclet num!
ber conditions this approach is valid\ and indeed con!
stitutes ones of the more attractive features of the recon!
struction method described below[ Given accurate data
on the liquid phase e}ective thermal conductivity and
given low Peclet number conditions\ simulated tem!
perature data generated using an e}ective thermal con!
ductivity will be essentially identical to data obtained
from numerical solution of the liquid phase ~ow _eld[

It is also important to note that early weld pool for!
mation likely satis_es the low!Peclet number constraint[
Kanou} and Grief|s ð10Ł careful simulations of stationary

gas tungsten arc welding clearly show that convection
"due to Marangoni\ Lorentz and buoyancy forces# plays
a negligible role while conduction plays a dominant role
in determining early!time weld pool shapes[ "For negative
s¼T\ and over heating intervals of up to ten seconds\
Kanou} and Greif show that time!varying pool depths\
widths\ and maximum temperatures are all essentially
determined by conduction[#

In addition to the values listed above\ the following
parameter values are introduced in all calculations]
L
 � R
 � 4×09−2 m\ q¼9 � 097 W m−1\ b¼ � 2×095 m−1\
T
i � T
� � 187 K\ L
fg � 6[254×095 J kg−0 A
 � 1[41\ and
B
 � 0[7621×093 K[ Note\ due to lack of equivalent data
for low carbon steel\ the values of L
fg\ A
\ and B
 are those
for stainless steel ð10Ł[

4[ Numerical methods

The problem de_ned in the last section is solved using
the Galerkin _nite element method and implicit time step!
ping[ The resulting system of equations is given by]

ððMŁ¦ght"ðCŁ¦ðKŁ#Ł"Tn¦0# � ððMŁ−ht"0−g#"ðCŁ

¦ðKŁ#Ł"Tn#¦htg"f½n¦0#¦ht"0−g#"f½n# "15#

where subscripts denote the time index and where
elements of the matrices ðMŁ\ ðCŁ and ðKŁ are given by

Mij � Pes gVe

fifj dV "16#

Cij � Pesup gVe

fifj\0 dV "17#

Kij �
0

fc"Tn# gVe

fk"Tn#fi\afj\a dV[ "18#

Here\ ht is the dimensionless time step\ g is a constant
having magnitude between 9 and 0 "g � 0 here#\ and Ve

is the element volume[ Suppressing the time index\ force
vector elements are given by

f½i �
0
fc gSe

fiq dS "29#

where q � f½k9T = n is the dimensionless time!dependent
heat ~ux and Se is the element surface[ Note that at time
tn¦0\ due to the use of small time steps\ the temperature!
dependent coe.cients fc and fk\ and the evaporative heat
~ux qvap are evaluated using temperatures determined at
time tn[

As shown in Fig[ 1\ the solution domain is discretized
using a combination of six!node linear triangular prism
elements and eight!node linear brick elements[ Mesh con!
vergence tests indicate that the mesh shown provides
su.cient solution accuracy while maintaining reasonable
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Fig[ 1[ Schematic showing the _nite element mesh and the ~ux parameters determined by the inverse procedure[

direct solution costs[ To ensure the validity of equation
"5#\ the total solution time t¼ is chosen to satisfy the
inequality

u¼pt¼¦"a¼t¼#0:1 ð R
 "20#

i[e[\ the time is chosen short enough that the characteristic
conduction penetration depth plus the total linear dis!
placement are signi_cantly smaller than the solution
domain|s outer radius[

4[0[ Data `eneration

As described below\ the reconstruction algorithm min!
imizes an objective\ S\ which depends on a limited
amount of thermal data[ Here\ we assume that the ther!
mal data at time tn consists of N surface temperature
measurements "Y0"tn#\ Y1"tn#\ [ [ [ \YN"tn##\ obtained at N
_xed\ discrete measurement locations on the workpiece|s
upper surface[ "See Keanini ð11Ł for a brief review of non!
contact surface temperature measurement techniques[
Refer to Krause ð07Ł for a description of a noninvasive
measurement method suitable for welding applications[#

Noisy data at these locations are simulated by _rst solving
the direct problem\ subject to the boundary and initial
conditions given in "5#Ð"05#[ Given this solution\ a ran!
dom component is added to the calculated temperatures
at each location]

Yk"tn# � Tk"tn#¦sdY K � 0\ 1\ [ [ [ \ N "21#

where Tk"tn# is the calculated temperature at location k
"at time tn#\ sd is the dimensionless error\ and Y is a
Gaussian random number[ As described below\ recon!
struction has been carried out subject to "dimensional#
errors ðs¼ d � sd"T
s−T
i#Ł of 9[9>C "exact data# and
21[67>C "24>F#[

5[ Reconstruction procedures

5[0[ Parameterization of top!side heat ~ux distribution

The set of parameters P determined by the inverse
procedure is chosen to describe the top!side heat ~ux
distribution[ Since the top!side ~ux is both azimuthally
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symmetric and dominant relative to all other surface heat
transfer modes "refer to Section 3#\ it is found that the
instantaneous top!side surface ~ux distribution can be
adequately described using only four parameters]

P"t# � ðq0"t#\ q1"t#\ q2"t#\ q3"t#Ł "22#

where the q?is are shown schematically in Fig[ 1[ Thus\
q"r � 9\ t# � q0"t#\ q"r � r1\ t# � q1"t#\ q"r � r2\ t# � q2"t#\
and q"r � r3\ t# � q3"t# with a linear variation in ~ux
between adjacent parameters[ Notice that a linear
decrease in ~ux is also assumed between r � r3 and r � R\
where r3 is the radial location of q3[ Since the charac!
teristic magnitude of q3 is roughly two!orders of mag!
nitude smaller than q0\ q1\ and q2\ calculated temperatures
are relatively insensitive to q3 and to the assumed ~ux
variation over r3 ³ r ³ R[

5[1[ Direct heat transfer problem

The direct problem solved by the reconstruction code
replaces the top!side heat ~ux distribution in "8#Ð"03# by
the parameterized distribution given in "22#[ The remain!
ing boundary conditions in "5#\ "6# and "04#\ however\
remain unchanged[ As noted\ the ambient temperature
condition at r � R is enforced by ensuring that R and the
solution time\ t\ satisfy the condition in "20#[ In exper!
iments where phase boundaries are reconstructed over
time intervals that violate "20#\ far _eld temperatures
along r � R must be determined experimentally ð0\ 11Ł[
At least two approaches are possible]

"0# Introduce a graded mesh that provides _ne spatial
resolution near the melt interface and coarse res!
olution along the outer boundary[ In particular\
elements along r � R should span the workpiece
thickness so that no internal nodes are located on
this boundary ð11Ł[

"1# An alternative approach\ described by Hsu et al[ ð3Ł\
is to allow internal far!_eld nodes and to interpolate
internal far!_eld nodal temperatures from measured
surface temperatures[ Although this latter approach
may be viable in thin\ highly conductive workpieces\
it is not generally suitable[

5[2[ Reconstruction al`orithm

At each time step during the inverse procedure\ the
following sum of squares objective is minimized]

Sn¦0 � s
N

j�0

"Yj\n¦0−Tj\n¦0#1 "23#

where N � 3 is the number of measurement sites and n is
the time index[ Letting Pn represent the vector of nodal
~uxes determined at tn\ the following procedure is used
to determine Pn¦0]

"i# Beginning with an initial guess P9
n¦0\ iteratively alter

Pn¦0\ until Sn¦0 is minimized[
"ii# Identify the corresponding minimizing Pn¦0 as the

estimated surface ~ux distribution at tn¦0 and return
to "i#[

Minimization is performed using the conjugate gradi!
ent method[ Initial guesses for Pn¦0 are generated by
adding a random component to Pn]

P9
n¦0 � Pn"0¦spY# "24#

where sp is arbitrarily set equal to 9[0 and Y is again a
Gaussian random number[

6[ Results and discussion

Inverse solutions have been obtained at two rep!
resentative plate velocities] u¼p � 9 m s−0 and
u¼p � 1[4×09−2 m s−0[ In order to ensure the validity
of condition "5# and to maintain somewhat reasonable
inverse solution times\ the total solution time is limited
to 9[16 s[ This interval is limited since inverse solutions
require on the order of eighty to one hundred cpu!hours
on a Sun Sparc 19 workstation[

In the following\ inverse solutions will be evaluated
using the following error measure]

e"k#
n �

=q½ "k#"tn#−q"k#
s "tn#=

q"k#
s

k � 0\ 1\ 2\ 3 n � 0\ 1\ [ [ [ \ Nt "25#

where Nt is the number of time steps comprising the
solution interval\ q½ "k#"tn# is the estimated magnitude of the
kth ~ux parameter at time tn\ and q"k#

s is the corresponding
actual ~ux ðfrom "8#Ł[ The errors in "25# are evaluated at
the four locations indicated by arrows "labeled by q0Ðq3#
in Fig[ 1[ Since local evaporative losses at r1\ r2\ and
r3 are less than _ve percent of the corresponding local
incoming ~ux\ then the net ~ux distribution remains
essentially independent of azimuthal position[ Thus\ the
measure in "25# indicates the estimation error over the
entire top surface[ ðNote\ Nt � 89 and ht � 2×09−2[Ł
When comparing boundary shapes\ we will refer to
boundaries calculated by the direct solver as {actual|
boundaries and boundaries determined by the inverse
code as {reconstructed| boundaries[

6[0[ Reconstructed boundary shapes] movin` plate

Here\ the plate is given as constant translation velocity
of 1[4×09−2 m s−0 in the positive x!direction[ Given
exact data "s¼ d � 9>C#\ the inverse code estimates the top!
side ~ux distribution with acceptable accuracy^ as shown
in Fig[ 2\ the errors e"1#

n \ e"2#
n \ and e"3#

n remain below _ve
percent essentially throughout the solution period[ The
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Fig[ 2[ Estimation errors e"k#
n for the four ~ux parameters "a# q0\ "b# q1\ "c# q2\ and "d# q3\ based on exact temperature data[ The plate

travel speed is =us= � 1[4×09−2 m s−0[

error e"0#
n however\ becomes relatively large near t¼� 0[5

s[ This apparently re~ects an instability\ which can be
reduced somewhat through _rst!order regularization
"result not shown#[ Although not attempted\ the insta!
bility might also be reduced by increasing the degree of
randomization sp in the initial parameter vector P9

n¦0 ðsee
"20#Ł[ This strategy\ which allows the minimization al!
gorithm to sample a larger portion of the parameter
space\ has proven useful in earlier work ð0Ł[ Importantly\
a comparison of the time!dependent reconstructed phase
boundary "corresponding to s¼ d � 9>C# with the actual
boundary indicates no visible di}erences between the two
"results not shown#[

When measurements are subject to errors of 21[66>C\
estimation errors e"1#

n \ e"2#
n \ and e"3#

n increase slightly "Fig[
3#[ In contrast\ the apparent instability exhibited in e"0#

n is
actually damped[ This latter e}ect may be analogous
to that of randomizing the initial parameter guess ðsee
equation "24#Ł\ where\ as mentioned\ randomization
allows sampling of a larger portion of the parameter
space[ Figures 4Ð8 compare reconstructed boundaries
"corresponding to s¼ d � 21[66>C# with actual boundaries

at various times during the heating process[ Clearly\ the
implicit approach provides reasonable boundary recon!
struction\ even though measurements are relatively noisy[

In closing this subsection\ we note that the recon!
struction procedure accurately predicts the pool bound!
ary even though surface heat ~ux estimates are relatively
inaccurate[ Since estimated ~uxes "q½ "k#"tn## tend to oscil!
late "from one time step to the next# about corresponding
actual ~uxes "q"k#

s "tn##\ this feature may re~ect temporal
cancellation and di}usive smearing of the oscillating
di}erence\ q"k#

s "tn#−q½ "k#"tn#[ Somewhat analogous
behavior in one!dimensional inverse heat conduction
problems is well known^ see\ e[g[\ ð12Ł[ In these cases\ local
interior temperatures are accurately reproduced while
boundary heat ~ux estimates can exhibit relatively large
errors[ "The analogy is not perfect\ however\ since esti!
mated interior temperatures in these problems are deter!
mined at temperature measurement sites\ i[e[\ they com!
prise a portion of the objective function[# This
interpretation is also consistent with the fact that _rst!
order regularization tends to smooth heat ~ux estimates
while negligibly impacting boundary reconstruction
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Fig[ 3[ Estimation errors e"k#
n for the four ~ux parameters "a# q0\ "b# q1\ "c# q2\ and "d# q3[ The plate travel speed is =us= � 1[4×09−2 m s−0

and the simulated measurement error is 21[66>C[

accuracy[ Further work is needed to fully explore this
question\ however[

6[1[ Reconstructed boundary shapes] station plate

Results similar to those observed in the last section are
obtained when the plate remains stationary[ For example\
comparing errors in Figs 2 and 09 "s¼ d � 9>C# and in Figs
3 and 00 "s¼ d � 21[66>C#\ we _nd that values of o0\ o1\ o2\
and o3 are approximately of the same magnitude in each
case[ Similarly\ o0Ðo3 generally increase when temperature
measurements become noisy "see Figs 09 and 00#\ while
o0 remains below 9[0 through most of both experiments
"Figs 09"a# and 00"a##[

Comparison of actual and reconstructed time!varying
boundary shapes in Figs 01Ð05 again indicate that the
implicit inverse procedure provides accurate boundary
reconstruction[ As before\ measurement uncertainty s¼ d is
21[66>C[ Similarly\ as in the last case "where
u¼p � 1[4×09−2 m s−0#\ it is found that reconstructed
boundaries associated with exact measurements "s¼ d � 9#
are indistinguishable from actual boundaries "results not
shown#[ Note\ as shown in Figs 01Ð05\ phase boundaries

remain azimuthally symmetric since the heat source
remains _xed relative to the plate[

In closing\ we note that while the implicit recon!
struction method has been illustrated using an example
from welding\ the method can be applied to a wide range
of problems satisfying the low liquid Peclet number con!
straint "4#[ As described above\ the particular form of "4#
is determined by the dominant driving force within the
liquid phase[ We also mention that the long term goal of
this work is to develop a real!time or near!real!time
inverse imaging diagnostic\ suitable for control and
inspection applications[ In order to achieve this goal\
work is needed in two directions]

"0# Inverse reconstruction algorithms\ suitable for
unsteady\ three!dimensional\ moderate and high
Peclet number ~ows are required[ Many industrial
liquid metal ~ows fall within these categories[

"1# Reconstruction using serial algorithms on single pro!
cessor machines is ine.cient and unsuitable for on!
line process control[ Signi_cant speed!ups will likely
require development of parallel reconstruction al!
gorithms[
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Fig[ 4[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start of
heating is 9[92 s\ the plate travel speed is =us= � 1[4×09−2 m s−0\ and simulated measurement error is 21[66>C[
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Fig[ 5[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start of
heating is 9[98 s\ the plate travel speed is =us= � 1[4×09−2 m s−0\ and simulated measurement error is 21[66>C[
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Fig[ 6[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start of
heating is 9[04 s\ the plate travel speed is =us= � 1[4×09−2 m s−0\ and simulated measurement error is 21[66>C[
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Fig[ 7[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start of
heating is 9[10 s\ the plate travel speed is =us= � 1[4×09−2 m s−0\ and simulated measurement error is 21[66>C[
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Fig[ 8[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start of
heating is 9[16 s\ the plate travel speed is =us= � 1[4×09−2 m s−0\ and simulated measurement error is 21[66>C[
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Fig[ 09[ Estimation errors e"k#
n for the four ~ux parameters "a# q0\ "b# q1\ "c# q2\ and "d# q3\ based on exact temperature data[ The plate

travel speed is stationary "=us= � 9[9 m s−0#[
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Fig[ 00[ Estimation errors e"k#
n for the four ~ux parameters "a# q0\ "b# q1\ "c# q2\ and "d# q3[ The plate is stationary "=us= � 9[9 m s−0# and

the simulated measurement error is 21[66>C[
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Fig[ 01[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start
of heating is 9[92 s\ the plate is stationary "=us= � 9[9 m s−0#\ and the simulated measurement error is 21[66>C[
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Fig[ 02[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start
of heating is 9[98 s\ the plate is stationary "=us= � 9[9 m s−0#\ and the simulated measurement error is 21[66>C[
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Fig[ 03[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start
of heating is 9[04 s\ the plate is stationary "=us= � 9[9 m s−0#\ and the simulated measurement error is 21[66>C[
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Fig[ 04[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start
of heating is 9[10 s\ the plate is stationary "=us= � 9[9 m s−0#\ and the simulated measurement error is 21[66>C[
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Fig[ 05[ Comparison of exact "upper _gure# and reconstructed "lower _gure# phase boundary shapes[ The elapsed time since the start
of heating is 9[16 s\ the plate is stationary "=us= � 9[9 m s−0#\ and the simulated measurement error is 21[66>C[

7[ Summary and conclusions

An implicit method for reconstructing dynamic mul!
tidimensional phase boundaries has been developed[ The
method is suitable for problems having small liquid phase
Peclet numbers[ Under these conditions\ a mul!
tidimensional Stefan problem emerges[ Explicit front!
tracking procedures are eliminated by incorporating the
latent heat e}ect in an e}ective capacitance method[ As
an illustration\ phase boundaries within moving and
stationary plates\ heated by concentrated\ high energy
density surface sources\ are reconstructed[ It is found that
boundaries can be accurately reconstructed using either
exact or noisy temperature measurements[ In order to
extend this work\ reconstruction methods suitable for
moderate and high Peclet number problems are needed[
This di.cult problem is under investigation[
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